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ABSTRACT 

 

EFFECTS OF QUERCETIN SUPPLEMENTATION ON INNATE IMMUNE FUNCTION 

AND INFLAMMATION IN FEMALE HUMAN SUBJECTS 

(May 2010) 

Serena Ann Heinz, B.S., Appalachian State University 

M.S., Appalachian State University 

Thesis Chairperson: Dru A. Henson, Ph.D. 

  

PURPOSE: Quercetin, a flavonoid found in fruits and vegetables, is a strong antioxidant 

with anti-inflammatory, antimicrobial, and immune-modulating properties. The purpose of 

this study was to investigate the effects of long-term quercetin supplementation on innate 

immune function and inflammation in human subjects.  

STUDY DESIGN: Female subjects (N=120, ages 30-79 years) were recruited from the 

community and randomized to one of three groups, with supplements administered using 

double-blinded procedures: Q-500 (500 mg/day quercetin, N=38), Q-1000 (1000 mg/day 

quercetin, N=40), or placebo (N=42). Subjects ingested two soft chew supplements twice 

daily during the twelve-week study period. Fasting blood samples were obtained pre- and 

post-study and were analyzed for plasma quercetin, interleukin (IL)-6, tumor necrosis factor 

(TNF)-α, and leukocyte subset cell counts. Natural killer cell activity (NKCA) and 

lymphocyte subsets were assessed on a subset of seventy-four subjects. Granulocyte 
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oxidative burst activity (GOBA) and phagocytosis were assessed on sixty-four subjects. 

Eighteen subjects had overlapping data.  

RESULTS: Quercetin supplementation at 500 and 1000 mg/day increased plasma quercetin 

(interaction effect, P<0.001) compared to placebo but had no significant influence on blood 

leukocyte or lymphocyte subset concentration, plasma IL-6 or TNF-α concentration, NKCA, 

GOBA, or granulocyte phagocytosis. NKCA was inversely correlated with BMI (r=-0.25, 

P=0.035) and body fat percentage (r=-0.38, P=0.001), and positively correlated with self-

reported physical fitness level (r=0.24, P=0.032).  

CONCLUSIONS: Results from this double-blinded, placebo-controlled, randomized trial 

indicate that quercetin supplementation at 500 and 1000 mg/day for twelve weeks 

significantly increased plasma quercetin levels but had no influence on measures of innate 

immune function or inflammation in community-dwelling adult females. 
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INTRODUCTION 

   

 Polyphenolic compounds are found in a wide variety of human foods, including 

fruits, vegetables, nuts, seeds, flowers, tea, and honey (1). Flavonoids are a large and 

complex group of polyphenols that share a basic three-ring chemical structure, with two 

aromatic centers and a central oxygenated heterocyclic ring (2). The most prominent 

flavonoids in fruits and vegetables are flavonols, and of these, quercetin (3,3’,4’,5,7-

pentahydroxyflavone) is the most commonly consumed in the human diet (2). Total dietary 

flavonol intake estimates for US adults range from 13 to 22 mg/day, with quercetin 

representing about 75% (3, 4).  

 Following absorption from food or supplements, elimination of quercetin is slow, 

with a reported half-life ranging from 11 to 28 hours (2). Quercetin conjugates are widely 

distributed in the organ tissues of rats after supplementation, where they may be biologically 

active (5). The physiologic effects of quercetin and other dietary flavonols are of relevance to 

human health because of their anti-oxidative (6, 7), anti-inflammatory (8, 9), and anti-

pathogenic (10, 11) properties. The present study focuses on the potential beneficial health 

effects of supplementation with quercetin with regard to inflammation and innate immune 

function. 
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Inflammation 

 The human body reacts defensively to pathogenic invasion with an inflammatory 

response characterized by pain, redness, heat and swelling. Blood vessels dilate at the site of 

infection, resulting in localized swelling and the accumulation of defensive blood proteins 

and complement components, while endothelial cells lining the nearby blood vessels are 

stimulated to express cell adhesion molecules that facilitate the attachment and extravasation 

of white blood cells such as lymphocytes and monocytes (12). This inflammatory response is 

mediated by various signaling molecules, including prostaglandins and cytokines. Some 

cytokines function as chemoattractants (chemokines) that recruit white blood cells to the site 

of an infection; other cytokines trigger a fever that simultaneously inhibits pathogenic 

activity and optimizes conditions for host defense (12). 

 While highly effective against acute infections, inflammatory responses can result in 

disease states if the inflammation is inappropriate, excessive or chronic. For example, pro-

inflammatory cytokines such as interleukin (IL)-1, tumor necrosis factor (TNF)-α, and IL-6 

are known to play critical roles in the development of rheumatoid arthritis via their 

inflammatory effects on endothelial cells in synovial tissue (13). Chronically elevated levels 

of the inflammatory marker C-reactive protein (CRP) and the pro-inflammatory cytokine IL-

6 have been strongly correlated with increased risk of coronary heart disease (14-16). 

Because of the potentially deleterious effects of chronic inflammation, the discovery of 

dietary supplements that could mitigate chronic inflammatory conditions and reduce risk 

factors for debilitating illnesses is of great current interest.  

 The advantage of using flavonoids to control inflammation lies in their safety and 

potential for providing other health benefits with long-term use. Contrary to earlier concerns 
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regarding quercetin’s potential in vivo genotoxicity, high-dose supplementation with 

quercetin (acute dosages of up to 2000 mg/kg body weight and long-term doses of up to 500 

mg/kg for two years) has been shown to lack a mutagenic or genotoxic effect in rodents (17, 

18). Furthermore, epidemiological studies have correlated numerous health benefits with 

regular flavonoid consumption by humans, including decreased incidence of coronary heart 

disease (19), decreased risk of common human cancers (20), and lowered markers of 

inflammation (21-24). 

 

Innate immune function 

 In vitro and animal studies also indicate that quercetin supplementation has the 

potential to exhibit multiple immunomodulatory effects including augmentation of neutrophil 

chemotaxis and oxidative burst activity (25), macrophage function (26, 27), and natural killer 

cell lytic activity (27, 28). Natural killer (NK) cells and neutrophils are dominant players in 

early host defense against pathogens, and their potential augmentation by quercetin could 

have important health benefits.  

 NK cells, which comprise 10-15% of circulating lymphocytes in humans, play a 

central role in initial host resistance to viral, bacterial, and parasitic infections due to their 

ability to kill target cells without prior sensitization (29, 30). NK cells express both activating 

and inhibitory receptors on their surfaces, and the killing of potential target cells by NK cells 

depends on the balance between activating and inhibitory signals. Granules containing 

granzymes and perforin are released into the immunological synapse between an NK cells 

and its potential target only if the activation signal dominates. When inhibitory receptors 

such as killer Ig-like receptors (KIRs) bind to the MHC class I proteins on the potential 
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target, molecules involved in the NK cell activation pathway are dephosphorylated (31). 

Thus, if an NK cell encounters a cell expressing normal levels of MHC class I proteins on its 

surface, the binding of inhibitory receptors leads to intracellular events that override the 

activation signal and the granules are not released. Because transformed and infected cells 

often have low MHC class I expression, they are vulnerable to attack by NK cells. The 

importance of NK cells to host defense against pathogens is underscored by the increased 

susceptibility to repeat infections experienced by patients with NK cell deficiency conditions 

(32). 

 Also critical to optimal cellular immune function are the phagocytic and microbicidal 

activities of polymorphonuclear leukocytes, or neutrophils, which comprise 50-70% of white 

blood cells (33). Neutrophils are granulocytes that migrate along chemoattractant gradients to 

infection sites, where they engulf pathogens via phagocytosis. Pathogens thus ingested by 

phagocytes can be killed through oxygen-dependent or oxygen-independent mechanisms. In 

the oxygen-dependent pathway, NADPH oxidase complexes on the phagolysosomal 

membrane catalyze the oxidation of cytosolic NADPH, a reaction which is coupled to the 

reduction of oxygen molecules in the phagolysosome (33). The resultant superoxide anions 

are dismutated by superoxide dismutase (SOD) to form hydrogen peroxide (H2O2), which 

generates other reactive oxygen species such as hypochloride (ClO
-
), hydroxyl radicals 

(OH·), and singlet oxygen (·O2). These highly toxic compounds are responsible for the 

oxygen-dependent killing of phagocytosed microbes, and their production causes a transient 

increase in oxygen consumption by the phagocyte, commonly referred to as the respiratory or 

oxidative burst.  
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 Quercetin, which has been shown in animal and in vitro studies to augment NK cell 

cytolytic activity and neutrophil function (25, 27, 28), could potentially be taken as a 

supplement to improve innate immune function, thereby reducing risk of illness.  

 

Previous work 

 Numerous in vitro studies that have examined the effects of quercetin on pro-

inflammatory cytokine production in a wide variety of cells have shown that quercetin exerts 

strong anti-inflammatory effects via suppression of nuclear factor-kappa B (NF-κB) 

activation (9, 34, 35). Homo- and hetero-dimers of NF-κB transcription factors are located in 

the cytoplasm of unstimulated immune cells, where they are tightly bound to IκB inhibitory 

proteins (9). When immune cells are stimulated, the IκB proteins are phosphorylated, 

ubiquitylated, and degraded, freeing the NF-κB dimers for translocation to the nucleus, 

where they bind to the promoter regions of genes involved in the inflammatory response. 

Inhibition of IκB phosphorylation represents one mechanism by which quercetin could 

suppress the expression of numerous inflammatory cytokines. 

 Cho et al. (34) used RAW 264.7 cells, a line of murine macrophages, to study 

quercetin’s anti-inflammatory actions. Macrophages are white blood cells that are important 

mediators of inflammatory response due to their production of cytokines and nitric oxide 

(NO) following stimulation by an endotoxin expressed on the cell walls of Gram-negative 

bacteria, lipopolysaccharide (LPS). Cho et al. found that nitrate generation, iNOS mRNA 

production, and iNOS protein expression were inhibited by quercetin in a dose-dependent 

manner, as were TNF-α, IL-1β, and IL-6 mRNA production. Their results indicated that 

incubation with quercetin inhibited the phosphorylation of ERK and p38 MAPK and also 
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inhibited the phosphorylation and degradation of IκBα, thereby stabilizing the NF-κB/IκB 

complex and suppressing the activation of NF-κB. 

 Similar experiments were performed by Nair et al. (9) and Min et al. (35). Nair et al. 

(9) studied TNF-α production and regulation in peripheral blood mononuclear cells 

(PBMCs), which are agranular immune cells that include lymphocytes (B cells, T cells, and 

NK cells) and monocytes. Their results indicated that in vitro quercetin treatment down-

regulated expression of TNF-α and NF-κB mRNA, suppressed exogenous and induced TNF-

α production in PBMCs, and inhibited the activation of NF-κB via suppression of IκBα and 

IκBβ phosphorylation. Min et al. (35) examined quercetin’s effects on pro-inflammatory 

cytokine expression in the human mast cell line, HMC-1. Mast cells are key mediators of 

allergic inflammatory responses. Once activated, mast cells produce numerous chemotactic 

and pro-inflammatory cytokines, including IL-6 and TNF-α. Min et al. found that quercetin 

treatment decreased TNF-α, IL-1β, IL-6, and IL-8 gene expression and production in 

stimulated mast cells via the inhibition of NF-κB and p38 MAPK activation.  

 As described above, quercetin has been shown to exert in vitro anti-inflammatory 

effects through inhibition of IκB phosphorylation and the consequent suppression of NF-κB 

activation. Binding sites for NF-κB proteins have been found in the promoter regions of the 

genes that code for both TNF-α and IL-6, and studies have shown that IL-6 mRNA 

production does not occur in the absence of activated NF-κB (36, 37). It might be expected, 

therefore, that quercetin supplementation would decrease circulating levels of IL-6 and TNF-

α. However, most of the existing data regarding quercetin’s anti-inflammatory properties 

have come from in vitro study designs, and relatively few in vivo studies have been 

performed. 



 

7 

 

 Choi et al. (38) fed mice either vitamin E-deficient or control diets for nine weeks and 

supplemented subgroups of the mice with 0.5% quercetin. After four weeks, they induced 

arthritis in the animals by immunization with collagen. Choi et al. found that the increase in 

joint tissue TNF-α and IL-1β mRNA expression associated with the vitamin-E deficient diet 

was reduced to control levels in the quercetin-supplemented group at nine weeks; however, 

no differences in cytokine mRNA expression were found between the quercetin-

supplemented and control mice on a normal diet. Mamani-Matsuda et al. (39) found that oral 

supplementation with quercetin (30 mg every two days) for ten days significantly reduced 

clinical signs of arthritis in adjuvant-induced arthritic Lewis rats, and showed that quercetin 

inhibited murine macrophage activation and TNF-α production ex vivo and in vitro.  

Stewart et al. (40) fed C57BL/6J mice a high-fat diet with or without 0.8% quercetin 

(approximately 0.8 mg/gram body weight per day) and found that circulating markers of 

inflammation INF-γ, IL-1α, and IL-4 were significantly lower in the quercetin-fed mice 

compared to controls after eight weeks. These changes in inflammatory status were 

independent of adiposity, which was itself unaffected by quercetin consumption, suggesting 

that quercetin supplementation might be used to mitigate the chronic low-grade inflammation 

associated with obesity.  

Few studies have examined the effects of quercetin supplementation on chronic 

inflammation in humans, however. A recent study by Egert et al. investigated whether 150 

mg/day quercetin for six weeks would decrease plasma TNF-α in overweight and obese 

subjects (BMI 25-35 kg/m
2
), but no such effect was found (41). The authors postulated that 

the dosage of quercetin used in their study was insufficient to exert significant anti-

inflammatory effects in the blood compartment. Beyond this, the limited human studies to 
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date have largely focused on the acute effects of quercetin in athletes following exercise 

stress. Longer-term supplementation studies are needed to assess the effects of quercetin 

consumption on circulating markers of inflammation. 

 As with inflammation, the body of evidence indicating that quercetin augments innate 

immunity including natural killer cell and neutrophil function is comprised primarily of data 

from animal and in vitro studies (25, 27, 28). Exon et al. (28) showed that rats fed 100 mg/kg 

quercetin dihydrate daily for seven weeks had significantly elevated natural killer cell 

activity (NKCA) compared to controls. This was in contrast to their in vitro results, which 

showed that splenic NK cells exposed to quercetin had decreased cytotoxicity (28). Exon et 

al. postulated that this discrepancy could be due to an indirect enhancement of NKCA by 

quercetin in vivo, perhaps through enhancement of interferon (IFN) effects. Quercetin has 

been shown to upregulate IFN-γ gene expression and production when cultured with PBMCs 

at concentrations from 10-50 μM (42). IFN-γ, in turn, regulates NK cell function (43) and 

may mediate the potential immunostimulatory properties of quercetin in vivo. 

 A recent study by Yu et al. (27) found that the cytotoxic activity of NK cells was 

increased in BALB/c mice treated with 2 and 4 mg/kg quercetin daily for three weeks 

following injection with WEHI-3 leukemia cells compared to mice that did not receive 

quercetin. The phagocytic activity of peritoneal macrophages was also increased in mice 

treated with 2 mg/kg quercetin compared to the untreated group, but macrophages isolated 

from peripheral blood did not show a similar response to quercetin. Akbay et al. (25) found 

that incubation with a quercetin glycoside (quercetin-3-O-rutinoside) increased the oxidative 

burst activity of human neutrophils in vitro, with maximum ROS production measured in 

neutrophils that were incubated with 4μg/mL. These studies indicate that quercetin may exert 
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immunomodulatory effects through the enhancement of NKCA and granulocyte oxidative 

burst activity (GOBA). 

 Although these in vitro and animal studies have yielded promising results with regard 

to quercetin’s potential effects on innate immune function and inflammation, previous human 

studies have been limited. The majority of quercetin supplementation trials to date have been 

short-term studies focused on quercetin’s acute effects on post-exercise inflammatory and 

immune function perturbations in athletes.  

 Acute heavy exertion is known to cause temporary changes in host immunity due to 

its suppression of NK cell function, T and B cell activity, and granulocyte oxidative burst 

activity (44).  Prolonged high-intensity exercise is also correlated with increased plasma 

concentrations of pro- and anti-inflammatory cytokines. The period of impaired immunity 

after intense exercise results in an “open window” during which an athlete is more 

susceptible to infection by viral and bacterial pathogens. Much of the research on quercetin 

to date has focused on its effects on subjects following heavy exertion to determine whether 

quercetin exhibits immunoprotective properties that might counter this post-exercise increase 

in illness susceptibility.  

Davis et al. (45) investigated the effects of quercetin on infection rates in mice using a 

viral-challenge study design. The data from this study indicated that 12.5 mg/kg quercetin 

feedings for seven days prior to inoculation with an LD50 dose of A/Puerto Rico/8/34 

(H1N1) influenza virus significantly reduced the increase in morbidity, symptom severity, 

and mortality in mice exercised to exhaustion for three consecutive days. This was the first in 

vivo experiment to provide evidence for the immunoprotective effects of quercetin ingestion 

in a placebo-controlled viral challenge model. However, the Davis et al. study did not 
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examine measures of immune function, so it was unclear whether this effect was due to direct 

anti-viral activities or to augmentation of immune function by quercetin.  

A double-blind placebo-controlled study of forty trained cyclists previously 

performed in our lab found that supplementation with 1000 mg/day aglycone quercetin for 

three weeks before, during, and two weeks after a three-day period of intense exercise 

significantly reduced incidence of self-reported upper respiratory tract infection (URTI) 

following the exercise period (46). In this study, measures of immune function such as 

inflammatory markers, NKCA, and GOBA were examined, but were not found to be altered 

by short-term quercetin supplementation. Another study in trained cyclists found that 

supplementation with 1000 mg/day quercetin for three weeks before and during a three-day 

period of intensified training attenuated the post-exercise increase in leukocyte IL-8 and IL-

10 mRNA expression compared to placebo, providing evidence for immune-modulating 

effects of quercetin through suppression of cytokine gene expression in vivo (47). Another 

short-term quercetin supplementation study in human athletes found that three weeks 

supplementation with 1000 mg/day quercetin did not offset the post-exercise decrease in 

GOBA experienced by runners who completed a 160-km ultramarathon; nor was quercetin 

supplementation effective at counteracting exercise-induced perturbations in leukocyte subset 

counts (48). However, it should be noted that plasma quercetin levels in the experimental 

group dropped significantly over the 20 to 30 hours it took for the athletes to complete the 

race; it is unknown whether consistently-maintained high plasma quercetin concentrations 

could have attenuated the immune perturbations experienced by these ultramarathon runners. 

 In summary, most of the existing evidence supporting quercetin’s anti-inflammatory 

and immunomodulatory properties has come from in vitro and animal studies. Furthermore, 
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in vivo data regarding the effects of quercetin on human subjects have primarily come from 

short-term studies focused on quercetin’s acute effects on post-exercise immune function 

perturbations in highly-trained athletes, and as such are limited in their application to non-

athletes. It is currently unknown whether long-term quercetin supplementation could have 

beneficial health effects in member of the general community. 

 

Purpose of study 

 The present study will examine the chronic effects of quercetin consumption on 

innate immune function and inflammation in female subjects recruited from the general 

population. It is currently unknown whether long-term quercetin supplementation exhibits an 

immunomodulatory effect in humans, or whether these potential effects are dose-dependent. 

The objective of this study was to measure the influence of twelve-week quercetin 

supplementation in two doses (500 and 1000 mg/day) on measures of innate immune 

function (NKCA, GOBA, and granulocyte phagocytosis) and markers of inflammation 

(plasma IL-6 and TNF-α) in middle-aged, community-dwelling female subjects. Dosages and 

supplementation periods used were chosen based on animal studies and prior work in our 

laboratory (47, 49). 
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METHODS 

 

Subjects 

 One hundred twenty females, 30-79 years of age, were recruited via mass advertising. 

Subjects had to be healthy and noninstitutionalized, and women were excluded if pregnant or 

lactating. Subjects agreed to avoid any other supplements containing quercetin; no other 

restrictions were placed on diet, supplement usage, or medications. This study was conducted 

according to the guidelines laid down in the Declaration of Helsinki and all procedures 

involving human subjects were approved by the institutional review board of Appalachian 

State University. Written informed consent was obtained from all subjects. 

 

Research design 

 Subjects were randomized to one of three groups: Q-500 (500 mg/day quercetin, 

N=38), Q-1000 (1000 mg/day quercetin, N=40), or placebo (N=42).  Supplements were 

administered utilizing double blinded procedures. Subjects ingested two soft chew 

supplements twice daily (upon awakening, and between 14:00 hours and the last meal of the 

day) during the twelve-week study period. Supplements were prepared by Nutravail 

Technologies (Chantilly, VA USA) with Quercegen Pharma (Newton, MA USA), and were 

soft, individually-wrapped chews (5.3 g/piece) that contained either 125 or 250 mg quercetin, 

125 or 250 mg vitamin C (ascorbic acid and sodium ascorbate), 5 or 10 mg niacin, and 20 

kilocalories of sugars in a carnauba wax, soy lecithin, corn starch, glycerine, and palm oil 
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base colored with FD&C yellow #5 and #6. A series of HPLC measurements was conducted 

to determine that the amount of quercetin in each chew was stable and accurate. Placebo 

supplements were prepared in the same way minus the quercetin, vitamin C, and niacin. Data 

from Quercegen Pharma indicate that bioavailability of quercetin is enhanced with vitamin C 

and niacin; hence, this study tested whether or not soft chews with or without the 

combination of quercetin, vitamin C, and niacin had an influence on the outcome measures. 

Subjects started supplementing after the first blood sample and continued for twelve weeks. 

Two weeks prior to the first lab visit for the study, subjects provided demographic and 

lifestyle habit information via a survey posted on the web using SurveyMonkey.com 

(Portland, OR USA). Information on dietary patterns was obtained through a semi-

quantitative food frequency questionnaire for food groups including fruit, vegetables, cereals, 

meat, dairy, and fat. Exercise habits were assessed through answers to categorical questions 

dealing with both leisure-time and work activities. Physical fitness levels were self-reported 

using a ten-point Likert scale, with one corresponding to low fitness and ten to high fitness. 

Subject height was measured with a stadiometer, and BMI and body composition were 

determined using a Tanita bioelectrical impedance scale (Tanita, Arlington Heights, IL 

USA). Before and after the twelve-week supplementation period, subjects came to the lab in 

the morning (7:00 - 9:00 hours) after an overnight fast to donate blood samples. Blood 

samples were taken from an antecubital vein with subjects in a seated position. Plasma 

quercetin levels and leukocyte subset cell counts were analyzed for all samples. NKCA and 

lymphocyte subsets were analyzed for seventy-four subjects, and GOBA and phagocytosis 

were assessed on sixty-four subjects. There was some overlap between the cohorts: eighteen 

subjects were tested for both NKCA and GOBA/phagocytosis. 
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Plasma quercetin 

 Total plasma quercetin (quercetin and its primary metabolites) was measured 

following solid-phase extraction via reversed-phase HPLC with UV detection as previously 

described (50, 51). Quercetin conjugates were hydrolyzed by incubating 500 µl plasma 

aliquots with 10 µl 10% DL-Dithiothreitol solution, 50 µl 0.58 M acetic acid, 50 µl of a 

mixture of β-glucuronidase/arylsulfatase and crude extract from Helix pomatia (Roche 

Diagnostics Corporation, Indianapolis, IN USA) for 2 hours at 37°C. Chromatographic 

analysis was performed using the Ultimate 3000 HPLC-PDA system (Dionex Corporation, 

Sunnyvale, CA USA) with a Gemini C18 column (Phenomenex, Torrance, CA USA). Three 

quality control samples, using human plasma samples spiked with quercetin at concentrations 

of 1.0, 1.5, and 3.0 µmol/l, were assayed in duplicate, with an intra-assay coefficient of 

variation (CV) of 12.5%. 

 

Leukocyte differential 

 A complete blood count (CBC) with leukocyte differential was analyzed in the 

clinical lab of the Watauga Medical Center (Boone, NC USA) using standard clinical 

laboratory equipment and quality standards.  

 

Plasma IL-6 and TNF-α 

 High-sensitivity enzyme-linked immunosorbent assay kits were used to measure total 

plasma concentrations of IL-6 and TNF-α in accordance with manufacturer protocol (R&D 

Systems, Inc., Minneapolis, MN USA). All samples and provided standards were analyzed in 

duplicate. The minimum detectable concentrations of IL-6 and TNF-α were <0.039 pg/ml 
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and <0.106 pg/ml, respectively. Pre- and post-supplementation samples were analyzed on the 

same assay plate to decrease interkit assay variability, and the intra-assay CV for all variables 

was less than 10%. Data were analyzed with SOFTmax software (Molecular Devices, 

Sunnyvale, CA USA).  

 

GOBA and phagocytosis 

 Simultaneous measurement of granulocyte oxidative burst activity and phagocytosis 

was performed using a modified flow cytometric assay (52). For each sample, 100 µl 

heparinized whole blood was dispensed into two 15 x 75 mm (5-ml) tubes. To each tube, 10 

µl hydroethidine (HE) working solution (10 µg/ml HE in PBS-glucose; Invitrogen 

Corporation, Carlsbad, CA USA) was added. The tubes were vortexed briefly, incubated in a 

37ºC water bath for 15 minutes, and cooled in a 4 ºC ice-water bath for 12 minutes. After the 

HE-loaded blood samples were cooled, 20 µl of working bacteria-FITC solution 

(Staphylococcus aureus labeled with FITC, diluted in PBS to 1.33 x 10
8
 particles/ml; 

Invitrogen Corporation, Carlsbad, CA USA) was added to both tubes and vortexed briefly. 

Tube 2 (test) was transferred to a 37ºC water bath, and tube 1 (control) was left in the ice. 

The tubes were incubated for 20 minutes, placed in an ice water bath, and 100 µl ice-cold 

Quench Solution (0.025% Trypan blue in 0.1 M Citrate buffer, pH 4.0) was added to each 

tube. The tubes were vortexed for 10 seconds and incubated for 1 minute to quench the FITC 

fluorescence of any non-internalized bacteria, after which the cells were washed twice with 

ice-cold PBS and resuspended in 50 µl cold fetal bovine serum. Samples were processed on a 

Q-Prep™ Workstation (Beckman Coulter, Inc., Fullerton, CA USA), which lysed the 

erythrocytes and stabilized and fixed the white blood cells. Tubes were stored at room 
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temperature in the dark until flow cytometric analysis, which was performed within 24 hours 

of blood collection for all samples.  

 Analysis of samples was performed using a Beckman Coulter FC-500 flow cytometer 

with CXP software (Fullerton, CA USA). FITC emits a green fluorescence that can be 

detected on fluorescence channel 1 (FL1); therefore, cells that phagocytose the FITC-labeled 

bacteria are FL1-positive, and the strength of the fluorescent signal detected on that channel 

is proportionate to the number of bacteria that have been phagocytosed by the cells. 

Similarly, cells thus stimulated by the bacteria will undergo an oxidative burst, oxidizing the 

non-fluorescent HE to ethidium bromide, which emits a red fluorescence that can be detected 

on fluorescence channel 3 (FL3). After gating on the granulocyte cell population 

(predominantly comprised of neutrophils) using forward scatter and side scatter, the mean 

fluorescence intensity (x-mean) for each channel was determined and shifts in x-mean were 

calculated by subtracting the control (4°C) x-mean from the test (37°C) x-mean for FL1 and 

FL3. Typically, 5000 granulocytes were counted for each reaction tube. The mean intra-assay 

CV was <7% for phagocytosis and <10.5% for GOBA.   

 

Lymphocyte subsets 

 Lymphocyte subset data (%NK, %B, and %T) was also obtained by flow cytometry. 

Briefly, peripheral blood mononuclear cells (PBMC) were isolated from heparinized whole 

blood by density gradient centrifugation with Fico/Lite. The cells were washed twice and 

resuspended to 1 ml in RPMI 1640 supplemented with 10% heat-inactivated fetal calf serum, 

penicillin, streptomycin, and L-glutamine (complete-RPMI). A sample (100 µl) of cells was 

removed and stained for 15 minutes with 10 µl CYTO-STAT® tetraCHROME™ CD45-
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FITC/CD56-RD1/CD19-ECD/CD3-PC5 monoclonal antibody reagent (Beckman Coulter, 

Fullerton, CA USA). CYTOSTAT® tetraCHROME™ is a combination of four murine 

monoclonal antibodies, each conjugated to a specific fluorochrome, used to differentiate 

lymphocyte subsets based on their cell surface markers. The lymphocytes were gated using 

intracellular complexity (side scatter) and FITC fluorescence intensity (CD45+), and flow 

cytometric dot plots of CD19-ECD vs. CD3-PC5 and CD56-PE vs. CD3-PC5 were produced. 

In this manner, the percentage of lymphocytes that were NK cells (CD56+ CD3-), B-cells 

(CD19+ CD3-), and T-cells (CD3+ CD19-) was determined for each subject. Absolute 

numbers of each cell type were then calculated using the CBC data to allow group 

comparison of circulating cell counts. 

 

NK cell activity 

 NK cell cytotoxic activity was assessed using a modification of a flow cytometric 

assay (46, 53). PBMC (effector cells) were isolated from heparinized blood by density 

gradient centrifugation with Fico/Lite, washed twice, and resuspended to 3.75 x 10
6
 cells/ml. 

K562 cells in log phase (target cells, 1 x 10
6
 cells/ml) were labeled for 20 minutes at 37°C in 

5% CO2 with 10 µl 3 mM DiO solution [3,3’-dioctadecyloxacarbocyanine perchlorate (DiO; 

Sigma Chemical Co., St. Louis, MO USA) in DMSO] per 1 ml cell suspension. After 

labeling, the target cells were washed and resuspended in complete-RPMI to a concentration 

of 5 x 10
5
 cells/ml. Effector and target cells were combined in four 15 x 75 mm (5-ml) tubes 

to yield effector:target (E:T) ratios of 60:1, 30:1, 15:1, and 7.5:1 with final volumes of 0.9 

ml. Given the proven reproducibility, high sensitivity, and large number of cells used in this 

flow cytometric assay, a single assay tube was used for each E:T ratio (53). Control tubes 
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received target cells with no effectors. All tubes received 0.1 ml of a 500 µg/ml solution of 

propidium iodide (PI; Sigma Chemical Co., St. Louis, MO USA) in RPMI, after which the 

tubes were vortexed, pelleted by centrifugation for 2 minutes at 1200 rpm, and incubated for 

2 hours at 37°C in 5% CO2. Following incubation, the tubes were vortexed briefly, placed in 

an ice-water bath, and analyzed by flow cytometry within 45 minutes.  

 Analyses of samples were performed using a Beckman Coulter FC-500 flow 

cytometer with CXP software (Fullerton, CA USA). DiO-labeled target cells emit a green 

fluorescence that can be detected on FL1 and compromised cells that have taken up PI emit a 

red fluorescence that can be detected on FL3. The percentage of target cells that were 

compromised was determined for each tube. The results were acceptable if the spontaneous 

lysis of target cells (percent non-viable target cells in the control tube) was less than 5%. NK 

cell-induced killing of target cells was determined by subtracting the spontaneous lysis of 

target cells from the percent non-viable target cells in tubes containing both effectors and 

targets at each E:T ratio. Results were normalized by conversion to lytic units, calculated as 

the number of effector cells required to kill 20% of 5000 target cells, and reported as the 

number of lytic units contained in 10
7
 cells (54).  

 

Statistical analysis 

 All statistical analyses were performed using SPSS PC v.16.0 software (SPSS Inc., 

Chicago, IL USA). Data are expressed as mean ± SEM. Data were analyzed using a 3 

(group) x 2 (time) repeated measures ANOVA, between groups design, with post-hoc 

analysis using independent t-tests that contrasted pre-to-post-supplementation changes of Q-

500 and Q-1000 with placebo. Self-reported fitness levels, BMI, body composition and 
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lifestyle data were correlated with NKCA using Pearson correlations. Subject characteristics 

were contrasted between groups using one-way ANOVA. For all tests, P<0.05 was 

considered significant.
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RESULTS 

 

Subject characteristics 

 Subjects were Caucasian females, ranging in age from 30 to 79 years, with a large 

variance in body mass and composition (Table 1). No changes in body mass and composition 

were noted over the course of the study and interaction effects indicated no group 

differences. With all subjects combined, no significant correlations were found between 

subject age and any of the pre-study measures of innate immune function (all P>0.4) or 

inflammation (all P>0.2). 

 

Plasma quercetin 

 Plasma quercetin increased significantly above placebo levels after twelve-week 

supplementation with 500 or 1000 mg/day aglycone quercetin (Group x time interaction 

effect, P<0.001) (Fig. 1). No significant correlations were found between plasma quercetin 

levels and dietary variables.  

 

Leukocyte subsets 

 The pattern of change over time was not significantly different between groups for 

total leukocytes (P=0.306), total lymphocytes (P=0.867) or neutrophil counts (P=0.193) 

(Table 2).  
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Plasma IL-6 and TNF-α 

 Twelve-week quercetin supplementation at 500 and 1000 mg/day had no effect on 

plasma concentrations of IL-6 (P=0.812) or TNF-α (P=0.208) (Table 2). 

 

GOBA and phagocytosis 

 The pattern of change over time for granulocyte phagocytosis (P=0.990) (Fig. 2) or 

oxidative burst activity (P=0.602) (Fig. 3) was not significantly different between groups. No 

correlations were found between any outcome measures and GOBA or phagocytosis. For all 

subjects combined, GOBA increased pre- to post-supplementation (P<0.001). 

 

Lymphocyte subsets 

 Circulating counts of NK, B, or T cells were not influenced by twelve-week 

supplementation with quercetin at 500 or 1000 mg/day (Table 3). 

 

NK cell activity 

 Pre- and post-supplementation data for killing of K562 target cells by NK cells 

showed no significant differences between groups across all E:T ratios (Table 4). The pattern 

of change over time for total NK cell cytotoxic activity was not different between treatment 

groups (P=0.696) (Fig. 4). Although NKCA tended to increase pre- to post-supplementation 

for all subjects combined, this apparent time effect did not reach significance (P=0.163). 

When pre- and post-study measures were averaged for all subjects combined (N=74), NKCA 

was correlated positively with self-reported physical fitness level (r=0.24, P=0.032) and 

negatively with BMI (r=-0.25, P=0.035) and body fat percentage (r=-0.38, P=0.001) (Fig. 5). 
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DISCUSSION 

 

 This is the first human clinical trial to investigate the long-term effects of aglycone 

quercetin supplementation on measures of innate immune function and inflammation in 

subjects recruited from the community. Subjects tended to be overweight individuals (mean 

BMI greater than 25.0 kg/m
2
) with mean pre-study plasma IL-6 and TNF-α concentrations 

that were slightly elevated compared to values reported for lean, healthy women in other 

studies (55, 56). The data indicate that twelve-week supplementation with 500 or 1000 

mg/day quercetin was not associated with changes in NKCA, GOBA, phagocytosis, or 

plasma concentration of IL-6 and TNF-α in this population.  

 Quercetin is a powerful antioxidant (6) that exerts in vitro anti-inflammatory effects 

through the inhibition of NF-κB signaling in a variety of cells including macrophages and 

peripheral blood mononuclear cells (8, 9). It was expected, therefore, that long-term 

quercetin supplementation would decrease circulating levels of IL-6 and TNF-α; however, 

quercetin had no effect on these markers of inflammation in the present study. Likewise, 

quercetin supplementation had no effect on NKCA, GOBA, or phagocytosis. A moderate 

time effect was noted for GOBA, highlighting the importance of seasonal effects on 

measures of immune function. The post-supplementation blood draw was in November, 

twelve weeks after the August pre-supplementation blood draw. Similar circannual rhythms 

in immune function have been observed in previous studies performed by our lab (57, 58). 
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Nonetheless, the pattern of change over time was not significantly different between 

treatment groups for any of the outcome measures in this study. 

 With regard to NKCA, GOBA, and granulocyte phagocytosis, the present findings are 

consistent with studies previously conducted in our lab investigating the effects of short-term 

quercetin supplementation on similar measures of innate immune function in athletes (46, 

48), but they are contrary to the results of quercetin studies utilizing rodent models and in 

vitro study designs (25, 27, 28). However, these human and animal studies may not be 

comparable for a number of reasons. For example, the Exon et al. (28) study used a larger 

dosage of quercetin (100 mg/kg) compared to the present study, which supplemented with 

average daily doses of 7 and 14 mg/kg quercetin for Q-500 and Q-1000. The dosages used in 

the Yu et al. (27) study were smaller (2 and 4 mg/kg), but the relevance of their results is 

confounded by the lack of a quercetin-treated group not injected with WEHI-3 cells. Possible 

species-dependent variations in phase II metabolism call into question the applicability of 

these animal study data to humans (59); furthermore, because of its metabolic transformation, 

quercetin circulates in the body and accumulates in tissues in forms that are quite different 

from those used in most in vitro studies (60).  

 Aglycone quercetin supplementation may lack an anti-inflammatory or 

immunomodulatory effect in humans due to either its reduced bioavailability or its metabolic 

transformation in vivo. Quercetin is found in fruits and vegetables in a water-soluble form in 

which the quercetin molecule is conjugated to a sugar moiety (2). The in vitro study 

conducted by Akbay et al. showed that neutrophil oxidative burst was increased by 

incubation with quercetin in such a glycosylated form (25). However, when quercetin is 

consumed, the sugar is cleaved off in the small intestine, allowing the lipid-soluble aglycone 
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form of quercetin to diffuse into the cells lining the intestinal wall (61). Quercetin in this 

aglycone form was used in the anti-inflammatory in vitro studies performed by Cho et al. 

(34), Nair et al. (9), and Min et al (35). During phase II metabolism in the liver, however, 

aglycone quercetin is either methylated, sulphated, or glucuronidated. Quercetin 

predominately circulates in the bloodstream in these conjugate forms, which differ not only 

from aglycone quercetin, but also from the glycosylated forms found in plant foods. 

Relatively few studies have examined the bioactivity of quercetin conjugates (60) and further 

work in this area is indicated. 

 Recent evidence in a murine model suggests that variation in apoE genotype may 

alter responsiveness to flavonoid supplementation. Boesch-Saadatmandi et al. (62) fed apoE3 

and apoE4 transgenic mice 400 mg/kg quercetin per day for six weeks and found that the 

quercetin-associated reduction in TNF-α production was significantly greater in mice with 

the apoE3 genotype. The Boesch-Saadatmandi et al. study assessed TNF-α production in 

whole blood stimulated ex vivo with lipopolysaccharide; thus their results are indicative of 

the effects of quercetin supplementation on inflammatory responses rather than on basal 

expression of TNF-α. Data regarding the effects of apoE genotype on responsiveness to 

quercetin supplementation in humans are limited. Egert et al. (63) assessed plasma TNF-α 

concentration after six weeks’ supplementation with 150 mg/day quercetin in obese and 

overweight human subjects, and found quercetin’s influence on serum HDL concentration 

and systolic blood pressure were dependent on apoE genotype, although no effect with TNF-

α was found. Future studies correlating apoE genotype with subject responsiveness to 

quercetin supplementation would be useful.  
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 Despite its known anti-inflammatory properties, the present study did not find a 

quercetin-related effect on circulating levels of IL-6 and TNF-α. It should be noted that, 

although the mean plasma TNF-α and IL-6 levels of subjects in this study were slightly 

elevated compared to those reported for lean females in other studies (55, 56), they fell 

within the normal ranges for adult females (64). It is possible that the lack of quercetin-

related effect on inflammation reported in the present study may be because these subjects 

were already within normal limits with regard to the outcome measures. Future studies 

comparing the effects of quercetin supplementation on inflammatory status in normal, 

overweight, and obese subjects would be of value. 

 While supplementation with aglycone quercetin appears to have no significant effect 

on inflammation, basal NKCA, or granulocyte function in humans, quercetin may exhibit an 

immunomodulatory and anti-inflammatory effect when ingested in other forms or in 

combination with other flavonoids. A recent human study found that four weeks 

supplementation with a fermented food rich in quercetin and other flavonoids significantly 

increased activation of NK cell cytotoxicity in response to IL-2 stimulation, but did not 

influence basal (non-stimulated) NKCA (65). Supplementation with polyphenol-rich cereal 

fractions has been shown to increase basal NKCA in prematurely aging mice, in addition to 

augmenting macrophage phagocytosis and ROS production (66). Our lab recently found that 

a two-week supplementation with a combination of quercetin, epigallocatechin 3-gallate 

(EGCG), isoquercetin, and omega-3 polyunsaturated fatty acids (N3-PUFAs) increased 

GOBA and decreased post-exercise plasma concentration of IL-6 (51). Future research will 

examine the combined supplements’ potential effects on NKCA and granulocyte 

phagocytosis. It may also be helpful to investigate whether IL-2-stimulated NK cell cytotoxic 
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activity in humans is affected by quercetin supplementation, alone or in combination with 

other flavonoids. In addition to studying quercetin’s effects on circulating levels of 

inflammatory markers, future studies may also assess inflammatory responsiveness using ex 

vivo stimulation of cells. 

 In the present study, we found that total NK cell cytotoxic activity was related 

inversely to BMI and body fat percentage, and positively with self-reported fitness level. 

These findings are consistent with previous studies linking NK cell function with physical 

fitness and healthy lifestyles (67, 68). A cross-sectional comparison between marathon 

runners and sedentary controls found that the marathoners had significantly greater NKCA 

than the controls, and that percent body fat was negatively correlated with NKCA for all 

subjects combined (67). In addition to physical exercise, other lifestyle factors such as not 

smoking and eating a balanced diet have been associated with elevated numbers of NK cells 

and enhanced NKCA, possibly due to an increased percentage of NK cells expressing 

perforin, granulysin, and granzymes A and B in subjects with good health practices (68). 

This suggests that optimization of NK cell function can be achieved through the maintenance 

of a healthy lifestyle. 

 In summary, twelve-week aglycone quercetin supplementation in doses of 500 and 

1000 mg/day had no effect on leukocyte subset counts, plasma IL-6 or TNF-α concentration, 

NKCA, GOBA, or granulocyte phagocytosis relative to placebo. A growing body of 

evidence indicates that a mixed flavonoid approach to modifying innate immunity is more 

effective than supplementation with a pure flavonoid such as aglycone quercetin. In athletes, 

a quercetin supplement combined with EGCG, isoquercetin, and N3-PUFAs significantly 

reduced post-exercise inflammation and augmented neutrophil function (51). Future research 
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will determine if the immunomodulatory effects of quercetin can be enhanced through the 

addition of other flavonoids (e.g., EGCG) or food components. 
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TABLE 1.  Subject characteristics (N=120, females, ages 30-79 years)
1
. 

 

 Placebo (N=42)  Q-500 (N=38)  Q-1000 (N=40)  F-Probability 

Age (y) 47.0 ± 1.1  45.4 ± 1.1  47.4 ± 1.3  0.459 

Height (m) 1.65 ± 0.01  1.64 ± 0.01  1.64 ± 0.01  0.940 

Weight (kg) 72.2 ± 2.9  71.3 ± 2.5  71.7 ± 3.4  0.979 

BMI (kg/m
2
) 26.6 ± 1.0  26.4 ± 0.9  26.6 ± 1.2  0.994 

Body fat (%) 34.5 ± 1.7  35.3 ± 1.5  34.3 ± 1.6  0.896 

 
1
 Data are presented as mean ± SEM. 
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TABLE 2.  Blood leukocyte subset cell counts and plasma inflammatory markers, at baseline 

and after twelve-week supplementation with quercetin at 500 or 1000 mg/day compared to 

placebo
1, 2

.  

 

      
Placebo 

(N=42) 
 

Q-500 

(N=38) 
 

Q-1000 

(N=40) 
 

Interaction 

P-value 

Leukocytes (10
9
/l)  

    Pre-study 5.91 ± 0.34 
 

5.80 ± 0.23 
 

5.78 ± 0.26  
0.306 

    Post-study 5.75 ± 0.29 5.94 ± 0.25 5.98 ± 0.31  

Neutrophils (10
9
/l)  

    Pre-study 3.41 ± 0.24 
 

3.50 ± 0.19 
 

3.21 ± 0.20  
0.193 

    Post-study 3.28 ± 0.21 3.63 ± 0.20 3.48 ± 0.24  

Lymphocytes (10
9
/l)  

    Pre-study 1.81 ± 0.09 
 

1.71 ± 0.07 
 

1.87 ± 0.09  
0.867 

    Post-study 1.81 ± 0.09 1.71 ± 0.08 1.84 ± 0.10  

IL-6 (pg/ml)  

    Pre-study 1.72 ± 0.18 
 

1.64 ± 0.19 
 

2.38 ± 0.78  
0.812 

    Post-study 1.76 ± 0.20 1.84 ± 0.25 2.58 ± 0.96  

TNF-α (pg/ml)  

    Pre-study 1.19 ± 0.10 
 

1.59 ± 0.22 
 

1.22 ± 0.17  
0.208 

    Post-study 1.24 ± 0.10 1.39 ± 0.19 1.24 ± 0.17  

 
1
 Pre- and post-study blood samples were obtained from all subjects (N=120) after an eight-hour fast.  

2
 Data are presented as mean ± SEM. 
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TABLE 3.  Blood lymphocyte subset cell counts for subjects with NKCA data (N=74), at 

baseline and after twelve-week supplementation with quercetin at 500 or 1000 mg/day 

compared to placebo
1,2

.  

 

 
1
 Pre- and post-study blood samples were analyzed for lymphocyte subsets using flow cytometry. 

2
 Data are presented as mean ± SEM. 

 

  
Placebo 

(N=26) 
 

Q-500 

(N=24) 
 

Q-1000 

(N=24) 

 Interaction 

P-value 

T cells (10
9
/l)         

 

 

    Pre-study 1.42 ± 0.08  1.33 ± 0.09  1.47 ± 0.08  

0.999 
    Post-study 1.41 ± 0.09  1.32 ± 0.09  1.46 ± 0.10  

B cells (10
9
/l)         

 

 

    Pre-study 0.24 ± 0.03  0.22 ± 0.02  0.23 ± 0.03  

0.603 
    Post-study 0.25 ± 0.02  0.22 ± 0.02  0.25 ± 0.04  

NK cells (10
9
/l)         

 

 

    Pre-study 0.20 ± 0.02  0.16 ± 0.02  0.18 ± 0.02  

0.885 
    Post-study 0.19 ± 0.02  0.15 ± 0.02  0.18 ± 0.02  
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TABLE 4.  NK cell activity, pre- and post- twelve-week supplementation with 500 or 1000 

mg/day quercetin compared to placebo, expressed as percent non-viable (%NV) target cells 

at four effector-to-target (E:T) cell ratios
1
.  

 

   E:T ratio 
Placebo 

(N=26) 
 

Q-500 

(N=24) 
 

Q-1000 

(N=24) 
 

Interaction 

P-value 

60:1 (%NV)  

    Pre-study 43.5 ± 3.4 
 

36.6 ± 3.3 
 

40.8 ± 2.8  
0.582 

    Post-study 47.2 ± 3.1 44.0 ± 3.6 49.1 ± 3.2  

30:1 (%NV)  

    Pre-study 37.9 ± 3.0 
 

32.3 ± 3.3 
 

35.6 ± 2.8  
0.659 

    Post-study 42.7 ± 3.0 37.5 ± 3.4 43.6 ± 3.3  

15:1 (%NV)  

    Pre-study 29.2 ± 2.5 
 

24.3 ± 3.0 
 

28.3 ± 2.9  
0.943 

    Post-study 32.6 ± 2.6 27.8 ± 2.8 32.6 ± 3.0  

7.5:1 (%NV)  

    Pre-study 19.9 ± 1.8 
 

17.0 ± 2.3 
 

20.1 ± 2.5  
0.950 

    Post-study 22.6 ± 1.9 19.8 ± 2.2 22.2 ± 2.4  

 
1
 NK cells (effectors) were incubated with K562 cells (targets) and analyzed by flow cytometry for 74 

subjects; the percentage of target cells that were killed due to NKCA at each E:T ratio is presented 

here as mean ± SEM. 
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FIGURE 1.  Plasma quercetin levels in response to twelve-week supplementation with 500 

or 1000 mg/day quercetin compared to placebo (N=120). Group x time interaction P<0.001.  

* P≤0.05, change from pre-study compared to placebo. 
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FIGURE 2.  Granulocyte phagocytosis of FITC-labeled S. aureus pre- and post-twelve week 

supplementation with 500 or 1000 mg/day quercetin compared to placebo (N=64). Data are 

expressed as shifts in mean FITC fluorescence from 4°C to 37°C. Group x time interaction 

P=0.990. 
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FIGURE 3.  Granulocyte oxidative burst activity following incubation with S. aureus pre- 

and post-twelve week supplementation with 500 or 1000 mg/day quercetin compared to 

placebo (N=64). Data are expressed as shifts in mean ethidium bromide fluorescence from 

4°C to 37°C. Group x time interaction P=0.602.
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FIGURE 4.  NK cell activity pre- and post-twelve week supplementation with 500 or 1000 

mg/day quercetin compared to placebo (N=74). NKCA is expressed as the number of lytic 

units contained in 10
7
 cells, where a lytic unit is defined as the number of NK cells required 

to kill 20% of 5000 K562 target cells. Group x time interaction P=0.696.  
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FIGURE 5.  Relationship between body fat percentage and NKCA of human subjects         

(r=-0.38, P=0.001). Data points average pre- and post-study measures for all subjects with 

NKCA data (N=74).  
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